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'Constant-Potential Reactions Simultaheously Controlled by
- Charge-transfer and Mass<transfer Polarization at
“ Planar, Spherical and Cylindrical Electrodes

Charles A. Johnson and Sidney Barnartt
Edgar C. Bain Laboratory
For Fundamental Research
. United States Steel Corporation
Research Center
Monroeville, Pennsylvania

. In general the rate of an electrode reactlon will be determined by both
charge-transfer and mass-transfer polarization, even in the case of slow reactions
if the concentration of one reactant is small. The purpose of this paper is to
examine the theoretical time behavior of the reaction rate at constant potential,
for electrodes having planar, spherical or cylindrical symmetry. The electro-
chemical systems considered will be limited to first-order charge-transfer mechanisms.
The current-time relation for planar electrodes at constant potential is known.
This will be examined in greater detail, particularly from the standpoint of rapid
reactions. Then a general solution will be given in closed form for spherical
electrodes. Finally an approximate solution will be developed for cylindrical

-electrodes, and a numerical method for the general solution outlined.’

Curreént-potential relatlon
Th$ current-potent1a1 relation for T reaction of the type:

Rlz=n)+ _ + ne” 'was derived by Gerischer:
%R o) ' '
1/'1o ;3 exp [(1 -Blneq ] —3 exp [-BnEqJ ) o) o
R O , .

Here i is the net anodic current density at overpotential g, i, the exchange
current density, B the transfer coefficient and € = = F/RT. The activities of R
and O are -designated ap and ag at the electrode- solution interface at time ts
these differ from the gulk values af} and ag as a result of mass transfer effects.
Equation 1 is limited to those charge-transfer mechanisms in which all of the
electrical work involved occurs during the rate-determining step, and which are

: firit order (defined at constant potential) with respect to the activities ag and

ag.

For rapid reactions the follow1ng approximation to eq. 1, also due to
Gerischer,4 is generally useds”” .

Aa :
; (9]
a a :
R (o]
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where Aap = ag - aﬂ and Aag = ag - ao.. Equation, 2 was derived on the assumption
that n, Aag and Aap are all small, a set of limitations too confining for rapid
reactions where activity changes develop rapidly. We propose, instead, a more
basic relation- for rapid reactions, valid at all values of Aag and Aapg. This is 4
obtained from eq. 1 by use of exp (kn) = 1 + kn:

a a a

(i/i ) R - R .0 : i
O o T MER = T (Lmpnen) (5= ) O
R ap ag {
)\
. AaR Aa - . :

_where < - -3—‘may be substltuted for the last factor. Equation 3 reduces to ‘
a a. . : ’

A4p 9o . ) . L .

eq. 2 only if the assumption is made that AaRp and Aag are small. This assumption -
is valid only during a very short interval after a rapid reaction is initiated; .
at longer times eq. 2 will exhibit greater deviations from the true relation (eq 1)
than will eq. 3. An illustration of these deviations will be given below for the

case of linear - diffusion.

Planar electrodes

Potentlostatlc current-time relations :

Gerischer and Vielstich® have derived the solution; in closed form, for .
a first-order reaction described by eq. 1, with semi-infinite linear diffusion as ’
the sole mass-transfer process. The electrolyte is assumed to contain excess
neutral salt, so that concentration ratlos may replace the activity ratios in eq. 1
with little error. The solution will be reproduced here and applied numerically
to a typical fast reaction to illustrate the range of validity for eq. 2 and 3.
The solutions for the concentrations and current density at the electrode surface

are: ,
- Q/xé)[l - ekp()\2t)erfc(ktﬁ-)] (4)

¢y = cg + (A/N) Ll - exp(th)erfc(Xf%)] | : (5) '
£ 5 i(yeg) exp(VPt)erfe (ue) e

where the desired charge-transfer current Eorresponding to overpotential ﬁ is

L(tz0) ™ 1 [exp(l-ﬁ)nen ~ exp(-Bnen) ] (7)
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Here the quantities N\ and A are defined by
NEE! 'expL(l-ﬁ)neqj L i exp(~Bnen)

o o * ®
nFcRDR' nFcoDo

. 7.
. x% ioexpL(l-B)nEnj ) i exp(-ﬁnEq)

(9)
nFDR% nFDO%

with « = Dp/Dy, the ratio of the diffusion coefficients. It should be noted that
the equations as given in the Gerischer-Vielstich pape{8 contained two errors (no
post-publication correction found): (1) omission of «2 from the first term of A;
(2) the quantity (k 2A/\) in eq. 4 was given as (xZA/)). The quantity A may be
written in terms of the charge~transfer current as

A= i(4e0) [“FDO% N (%)

Substituting for A in eq. 4 and 5 one obtains the concentrations in terms of the
charge-transfer current:

- -1
cg = c; - 1(4e0) LnFDR'bx:l [1- - exp()\zt)erfc()\t%)] (4a)
0.y r ED %-7_1 : 2 : + :
o o (+=0) Ln o~ [1 - exp(A t)erfc(kt“)] . (5a)

. If the electrode reaction is rapid (q small), the current-time relation
is still given by eq. 6 but the parameters i(t=0)> N and A may be simplified to:

d(gzo) = 10N © o (10)

P P - G i} > ; Y : '
TN ¢ Ben o F Yt o3 : (11
PR ’ Pr P ] )
A= ion/RT Do’" ' (12)
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The current-time relation (eq. 6é) is obtainable from eq. 1 by substitu-
tion for cg and ¢o from eq. 4 and 5. Similarly, substitution for these concentra-
tions in eq. 2 and 3 yields the corresponding approximate current-time curves.
The following numerical case was selected to illustrate the deviations of the
.approximate curves from the rigorous one: i, = 5 x 10-3 A/cm2 at 25°C, § = 0.5,
n=1, ¢ =5x 102 and cf = 10-2 mole/L; Dg = 2 x 10-5 and DR = 10-5 cm?/s.
With these values the reaction rates should be roughly equivalent!to those
reported? for the ferrous-ferric reaction.on bright platinum. Figure 1 shows the
calculated current-time curves for an applied overpotential of 10 mV. At the
longest time shown (t = 0.21 s) cg has changed by 2.4% and cp 17%. These changes
are sufficient to cause considerable deviation of eq. 2 from the true curve, but
eq. 3 remains extremely close. Thus eq. 3 should be used as the basic rapid-
reaction equation, while the former is an approximation useful only for very
short reaction times. ’

) It may be noted from eq. 4a, 5a that the maximum change in concentration,
which occurs §t t »= (and i - 0), is given for each of the_diffusing 3ubstancesl
by i(t:o)LnFDEX]-l‘ At any given time t the same fraction [l - exp (A t)erfc(kt?)]

of the maximum change has taken place for each substance. In the present example
this fraction is 0.572 at the longest time considered (0.21 second).

Evaluation of i(t:o) and \.

If the argument A3 is small eq. 6 may be approximated by

| i = i(t:o) [1 - (2)%5) xté'+ kzt] (13)

For a very short period, up to the time tpe last term in brackets ceases to be
negligible, the initial region of the i-tZ curve is linear (e.g. t<10 ms in Fig. 1).
From this line i(t:o) may be obtained by extrapolation, and the slope of the line
yields M. Experimentally, however, this linear region will often be inaccessible
for moderately rapid reactions with present-day potentiostatic circuitry. An
appreciable time is required to attain the control potential within a small fraction
of a millivolt (n being small), primarily because it is necessary to incorporate
automatic compensation for the IR drop between the controlled electrode and the
capillary tip of the reference electrodelO,

: To permit analysis of experimental current-time curves which exclude the
initial linear region, we present here another simple procedure for evaluating
i(t:o) and M. In this method one selects an arbitrary time t, and reads the
current from the experimental curve at times t and 4t. The ratio of these two
currents is :

i(;) . exp(xzt)erfc(Xt%147
at) exp(4k2t)erfc(2kfé)

(14)

This ratio is readily calculated for all values of )d% rom tablesll of the
function exp (y2)erfc(y), and is shown in Fig. 2 for At® = 0 to 1. The experi-
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mental value,of the current ratio for a specific time t; has a corresponding
value of At;? which is obtained from Fig. 2, and this value yields A. The pro-
cedure may be repeated for tines tostgsty..ato obtain a mean value of A.
Utilizing the mean X\, each measured current at t),tp,t3...yields i(t:o% from
eq. 6. If the deviations of the individual values of X or of i(t=o) @ out the
mean value are found to be small and randomly distributed, one has support,for
the.a priori assumption of a first-order charge-transfer mechanism. As AtZ

‘increases, the slope of the curve in Fig. 2 decreases; hence the precision with

which X\ can be evaluated decreaseg with increasing time in the intermediate-time
range (0.85 < i(t)/i(t=0)~ 0.45)10, '

Evaluation of charge-transfer parametersé”'7

For slow electrode reactions (n relatively large), it is sufficient to
determine i$t=0) from potentiostatic current-time curves as a function of n, either
for anodic (1 positive) or cathodic (n negative) polarization. The well-known
Tafel plot then yields both i, and 3. For rapid reactions (small n), measurement
of i(t-¢) in a given solution yields i, from eq. 10; since i, is given by

s 0\B (,0y1-8
iy 7 ig ¢ (ag)F (aQ) (15)
where i is the .standard exchanée current density_,12 B is obtained from deter-

minationd of iy with solutions in which ag is varied at constant a8, or af varied
at constant af.

Evaluation of DR or DO
The ratio i(t:o)/* from eq. 7 and 8 is given by

“(t0) o [explneny - 1) [2x0loEn) | L[} (16)
. cR-/bR CO"/bO

iand is seen to be independent of i, and B. Thus the values of iét:o& and M
stima

obtained from a single potentiostatic current-time curve permit tion of
one of the diffusion coefficients if the other is known. This is so even though
i(t=0)and A are obtained from the current-time curve at short times, where the
reaction is partly controlled by the charge-transfer kinetics.

1
The current at long times (At2 >> 1) is under complete mass-transfer
control, and a plot of i vs. t72 is linear with a slope proportional to the ratio
i(t:O)/X’ as was shown by Gerischer and Vielstich. Hence the long-time currents
.permit evaluation of the diffusion coefficient somewhat more directly.

Spherical Electrodes

The problem is solved here in closed form for an electrode reaction at
constant potential involving a first-order charge-transfer mechanism (eq 1), with
diffusion in a system of spherical symmetry as the sole mode of mass transfer.
The mathematical formulation of the problem comprises differential equations:

o222 )%, aa(,22) %
g3 A&\ T Tar J7a ¢ Po2r ar 3
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with 1n1t1al conditions (t=o, r> a): cg = cR, ¢y = c§ and boundary conditions
(all t): . : :

s _v\\ﬁ;;"- il _ -

ac ac

s R _ _ _0 s /
r=a: i= nFDR_ar - = nFDO 3t

~

Here a is the electrode radius, and i is the current density given by eq 1 with
concentrations substituted for activities.

General Solution

The general solution of this problem, derlved by the Laplace transform
method, is presented in the Appendix. Equations Al7 and Al8 give the concentra-
tion changes at the electrode, and eq Al9 the current density. Two regions of
the current-time curve are of particular interest for extracting the charge-transfer
parameters, namely the initial short-time section and the final long-time section.

5 (a) Short-time SOlUthB This is obtained by use of the approximation,
_exp x° erfc x=1 - (2/ﬂ~ x + x“, which is valid for small x. Equations A17-19

convert to
- L , . -
0 t=o) i 2 _ R N 1 17
CR - CR - _i__gl L '%t. 1 + ;I_ t ( )

nFDR o

nFD ‘
AD_ +A\D. ‘
[1- 23 (1. R o ),2 :] (19) j
(t=o0) . :; and /
where
: Il
‘ . /
i exp(l-B)nen i exp(-pnen) |
A = =2 PP R ° (20)
R o]
nFDRcR. nFDOcO

and also A =\ D + XOE% and iy o) = nF(XRDRcR = \oDy c2) as for planar geometry. '
A comparison o? eq 19 with the corresponding eq 13 for %he planar case shows that,

over sufficiently short times such that the term in t is negligible, the sphere

and plate electrodes yield the same linear i - t? relation. The linear behavior

terminates sooner for the small sphere, however, since the term in t is larger in
eq 19 than in eq 13.

If this linear portion of the curve is experimentally accessible, the
values of \ and i(t=0) obtained from it can be used to determine the charge-
transfer parameters and one of the diffusion coefficients, as described above
for planar electrodes. For moderately rapid reactions; if the initial portion

is inaccessible charge-transfer parameters can be determined from the long-time
portion of the curve as shown below.




)

e e

e PR LNy

T

9.

i (b) Long~time solution: Use is-made of the approximation, exp x2 erfc x
= mTe¢ x7*, valid for large values of x. Equations Al7-19 become :
: i a (x% -1)-1 '
e = 0. At=o) __ - a : [1+ 9 a }(21)
R -
R nF DR(I +ang + axoi Coltang t axo| (DRnt)%
c. = c°‘+ l(t:o) 3. rl + akR(K o 2 ] (22)
07 0" nF - DGl +axy + ah ) L L+ ahg + ak, (Doﬂt)i K
. 2 '
i = __".]"‘{L:o) TN a ()\R/DR'Q' + )\Q/Dot) 1 ] (23)
1+ ahp + akg - 1 +ahg + ahg (ﬂt)§
A plot of i against td& is a straight line, of form
.o ¥
1 — 1(t"°°) +0;t . (233)
-with intercept
. ) i T . 1 .
1 ﬂtio2
(t » =) = — (23b)
. ¥ + axR + axo ‘
. and slope
2 : ) -
a“(n, /M ¥ + xc/b ﬁ') Y (t=0)
G- R'"R 0 (23¢)
: - ¢
T akg + ang)?

It may be recalled!® that reversible reactions at spherical electrodes also
exhibit a linear i - t™2 curve at long times, but the intercept and slope are

. then quite different from the corresponding expressions for irreversible reactions

{eq 23b,c).

At long times the current at a spherical electrode goes towards the-
finite value given by eq 23b, whereas at a plane electrode the corresponding
currenf‘goes to zero. In.the .latter case the reaction becomes essentially
diffusion cqntrolled8 at At# >l{or at i/i(t=°) < 0.43), so that current measure--
ments at long times give no information about the charge-transfer mechanism. With
small spherical electrodes, however, the reaction remains under partial charge~
transfer control at all times. Provided the diffusion coefficients are known, the
charge-transfer parameters may be derived as follows. We define the quantity

’ ) '
A c. D
p =B = 20 exp(nen) (24)
XO c0 D, - .
R R
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The combination of eq 23b, 23c.and 24 .yields .. e

' a i £ o ) 1
- = a ———A—%f——L —QE + - -
)\AO - D£ -p-l—j “ 2
D .0

1 -
(25)
[of n.v, . DR"

This permits evaluation of Ay corresponding to the value of n which establishes
the current-time curve. After measuring current-time curves at several values of
n, we may plot log N\g against n, singce from eq 20 ‘

log g log{i /nFDed) - (Bne/2.3)n (20a)

to obtain B from the slbpe and-io from the intercept at g = 0.

Particular case: DR = D0 )

It is of interest to examine the special case of D = Dy = D which was
treated by Shain, Martin and Ross.l4 The time variations of current density and
concentrations at the electrode surface become, from eq Al7-19,

cp ” c; - tzo il - exp((1 + %)2x2t)erfc((l + &)\ é)w (26)
nFD )\(l + ’*) 2 .
o _ ‘im0 ] © 2.2 *
Co = Co T = [1 - exp((1 + )" A“t)erfc((1 + ®)rt )7 (27)
nFD2A(l + &) -
L L T 5 A% erfe (1 + o)At ] .(428)
{po L-» T-nlE P AR ]

1
where d = D?/aN. Equation 28 is equivalent to the solution for the current
previously given.

The short-time current at A2 << 1 now becomes
' S . -+ . (2 J o (29)
1T, Ll 2m °At? 4+ (1 + )N\t

Thus from a single potentiostatic current-time curve the initial lineaf i-th
portion yields '\ and i(t=g)» from which the charge-transfer quantities § and i,
are evaluated, and the ratio i(tgo)/xlgives the diffusion coefficient (eq 16).

‘If the initial portion of the curve is experimentally inaccessible,
it is poésible to derive the charge-transfer parameters from the currents at
longer times provided the diffusion coefficient is known. Shain et all# déscribed
a treatment of the longer-time currents involving ‘trial-and-error curve fitting;
this treatment is restricted to slow reactions at relatively high n. We note
here that the long-time current is given by eq 23, which when simplified for Dp=
Dy = D yields

R 121 -
L = - ( ) ' _ (30)
l(t=0) 1 + & 1 +3 ng)\tl

L NSl G
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This provides a more direct method, and one which is applicable to rapid reactions.
The slope o and intercept i(t - @) of this linear i/t~2 relation yields X in the
form '

. -1
N cDn? (3% (4 La - aonto?) =2

’ ‘
t

From A the quantity —~qD/ax is calculated, whence l(t o) is obtained from the
intercept 1(t - ) = (t 0) O 51+ 3)~ l. We may determine i t= o) in.-this way at
several values of n, using a single solution and either anodic or cathodic
polarization. Thus for anodic polarization the charge-transfer current is given
by eq 7, which may be rearranged to

!
(t=o) - ). 5._
log exp(nen) -1 = log i, (32)

A plot of the left side against n yields i, (intercept) and B (slope).

Cylindrical Electrodes

Here the problem comprises a first-order charge-transfer mechanism
(eq 1) combined with diffusion to a cylindrical electrode of radius a as the
sole mass=transfer process. As before, the time variations of current and
concentrations at the electrode surface are to be determined for a reaction at
constant potential. The mathematical description consists of differential
equations:

_R i —R,L_RT ., _0O _ _0,1_70
o PRUZ T I =0 [ “ra

vwith inifial conditioné (t=0, r b a): CR = cg, CO = c8, and boundary conditions
(all t): .

[¢]
r — 00§ CR-»CR H CO-’CO
6cR dc
r = a: i= ~nFDR Fre = - nFDO 5;—

A solution of this problem based on the use of Laplace-transforms, is
described in the Appendix. The method does not lead to a general solution in
closed form, but the entire current-time curve may be determined numerically for
any specific case. An approximate -solution, valid at sufficiently short times,
is derived with the use of asymptotic expansions. The current and the concentra-
tions at the electrode surface are given by eq A33-35 of the Appendix. For the
special case Dy = Dg = D, 'these equations convert to: )

i/i(t_;o) -1 - 2!7-'%)\1:%

i

e < o0 - = onhid
nFD

R
. i oy '
co = 2 Jﬂﬁl 2t - Ry o (35)

+ (1 + /2% (33)

(34)
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where A = A(1 + 5/2); quantities A and 5 are the same as defined above for planar
- and spherical symmetry. The equations reduce to the corresponding ones for
planar electrodes if the cylinder is large (a >>D“/x) It is seen from eq 33 that
there will be a short period of time during which a ¢ylindrical electrode of any
radius will yield the same linear i - tZ relation as does the plane electrode.
Deviation from this line, represented by the term in xzt, will develop somewhat
faster at a small cylindrical electrode than at a plate, but not 5b fast as at a
spherical electrode of the same radius.

Comparison of planar, spherical and cylindrical electrodes )

A numerical solution was carried outl3d isee Appendix5 for the current-
time curve at a small cylinder of radius a =~ D/M\ (hence & = 1) for the spécial
case of Dg = Dy = D. This is compared in Fig. 3 with the corresponding curve for
a sphere of the same radius, obtained from eq 28. Also shown is the curve for a
large sphere pr large cylinder {a >> < D/N\), which-is the same as eq 6 for the
plane. At Atz = 5 the current ratio for this small sphere is close to the value
5/(1 +8) = & for t ~ = (see eq 28). The current ratio for the planar electrode
goes to zero as t - =. The curve for the cylinder is positioned about midway

between the other two.

Figure 4 presents the short-time approximations to these curves, as
given by eqgs 13, 20 and 33 for the planar, spherical and cylindrical cases
. respectively. These approximate curv§s lie somewhat above the corresponding
curvesin Fig. 3, but for the range A% = 0 to 0.25 the deviation.is small. At
AtZ = 0.25 the currents given in Fig. 4 are 1.4% high for the planar electrode,
2.5% high for the cylindrical and 4.3% high for the spherical electrode.

As the electrode radius is increased above the value v D/\, the upper
two curves in Fig. 3 and 4 will move gradually closer to the planar-electrode
curve.

Summary

l. A current-potential relation for rapid reactions, applicable to
first-order charge-transfer mechanisms, is proposed and illustrated by a
numerical example. This equation (eq 3) has a much wider range of valldlty than
the form previously used (eq 2).

2. The analysis of potentiostatic current-time curves for planar
electrodes, for reactions controlled simultaneously by charge-transfer and
mass-transfer polarization, has been extended. This analysis is based upon
measurements of the ratio of current at some time t to that at 4t, and permits
extraction of the charge-transfer parameters B and io from the experimentally
more accessible part of the curve following the linear i - t2 portion.

3. Closed-form solutions to the general boundary-value problem for
spherical electrodes are derived.

4. The boundary-value problem for cylindrical electrodes has been
treated, and a general method for obtaining numerical solutions outlined. Also
approximate analytical solutions valid for short times are derived.

5. Current-time curves for a particular small radius of sphere and
cylinder are compared with the corresponding planar-electrode curves. The
small sphere yields higher currents at a given time than does the plate. The
curve for the cylinder lies between the other two.

6. The current at a small sphere approaches a constant value, different
from zero, as t - «. The long-time current permits determination of the charge-
transfer parameters because the reaction remains under partial charge-transfer
control at all times.
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APPENDIX |,

Solution of the diffusion problem for spherical electrodes.

The diffusion equation for a system having full spherical symmetry is

1 8,28 _ fAc
P I3 R |

where ¢ = c(r,t) is the concentration at time t and radial distance r. On making
the substitutionll

U(r,t) = r c(r,t)

the diffusion equation becomes

5 a%u _ au
el ot
OT

and, in terms of the new variable U = r¢ can now be treated in much the same
fashion as diffusion in a linear system. Thus in the present problem we define

Up(r,t) = x cR(r}t)- 5 Uglrst) = 1oy (r,t) (A1)
which satisfy the differential equations 5
2 /
LM o o 2% Mo (A2)
. R 32 At 0,p2 Ot .
with initial conditions, for a spherical electrode of radius a,
r>a; UR(r,t:o) ='c§ r o Uo(r,t=o) = cg r ' (A3)
and the boundary conditions: o '
(A4)

: o
r - ot UR(r,t) -+ cg r, Uo(r,t) >ey T

The remaining condition is that for the electrode current. The current density is.
given (in terms of the electrode reaction) by eq 1, which in the present. notation is

i(t) _ exp((l ~ B)ne - o
Ei-l = - Up( T = a,t) - & — Ul £ = a,t) (A5)
[o] CR a co a X .

ac » au
; - - R - 1 _R i
i(t) = - nfDy | = = + nFDy [ ;5] -5 UR(a,t)] . (A6)
=a r=a a
and o ;
N ac - au
et L 0\ _. i 0} .1
i(t) = -nfDy | 3= ~; nED L o . % Uo(a,t)] (A7)
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'On'combining eq A5 A7 we find the conditions which must be satisfied

on the electrode surface r = a:
ay -
0 _ ) L2
= = + Uo(a,t, R } UR(a,t) g
. r=a
[ (a8)
au A A
R - _Q ~ 1
F - = Uo(a t) + UR a’t)[)‘R + a] I'e
r=a \L
with k = DR/DO and . ' ] 1
i exp[(1 - ginen) i, exp[-Bnen (n9) |
A, = PN T T ,
R nFDy cg nFDO 0 ‘ P
as in the Gerischer-Vielstich notation®. In terms of the Laplace transforms \‘
o ’ \
. N -st
Yo(r,s) = ('o e Uo(r,t)dt l
Y, (r,s) :I e St u_(r,t)dt
R ’ ; R ,
o !
the differential equations A2 and initial conditions A3 become /‘
vy . RN . 1
D =s¥, -¢%r 3 D.—=sY -cr (A10) |
_ R a2 R ™R 0,2 "o % ‘
The solution which satisfies the boundary conditions A4 is
Yo(rys) = als) exp[-Vs/Dy x] + o r/s ~ (AlY)
’ {
, ° '
YR(r,s) = B(s) exp[- ¥ s/DR r] + cp r/s }
where a(s) and §(s) are determined by the simultaneous solution of eq A8: |
. ?
[\, xcd - A of J[a ~sDy +~NDP 1. exp[a\/s/DOJ
ols) = R R 0 R
s[s + yNs +5'] Y
(A12)
RN co/x - N ][a ~/sD + DODR . explavs /DR]
Bls) = . '
sls +yWs +5']
with
Y = XR-JDR + XOJDO + (JDO +JDR)/a (A13)
a
b' = JDPLlL + alry + 1) 1/a° (AL4)

N~
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Equations All, with the values of a(s), 8(s) from eq Al2, determine the Laplace
transforms of the variables Uo(r t), UR(r t) and hence the concentrations
colryt), cplr,t).

We_ require the values of the concentrations at the phase boundary r = a
and the current as functions of the time. The current is most easily obtained by
taking the Laplace transform of eq A7: :

)

ay .-
- rif o6y _ L 7 Al
J(s) = -nFDg | a(@r >r:a 3 Yo(a,s)_} (A15)

with Yo(r,s) given by eq All and

J(s) m | i(t) e %t gt
‘o

The current and concentrations are now readily obtained by inversion of eq Al5
and AllZ To accomplish this we must first factor the common denominator of
als), 3 S)

(s+Y'\/_S+5') = (N/S‘*’E)(N/’S'*’H)

r-—%‘<‘>\+(”o JD.)/a + A%+ J—_—J—- 2 A )-'%}
~Po VPRI T L a + 3 Op/Dg - AP WDy - D) |
’ : 5 (AL16)
. o - D.-D_\ 2
e B - 8 (ZEE) 2 e BB, By )
\\ N
:\ with A = ko»fDo A JDR. These relations yield'!
{
~ _ D, Jb
k cRic0 _A L ao (l-%) +(l-;—o)expp.2t erfep/t
i (8-p) H #
‘ Jo- : _ . .
2 .
n‘\ : -(l - BE—O)expE t erfcf V't :‘ : (A17)
\ c. T C +_A_r‘/_D_a l-l + -\-/i expp2terfcp~/t.
. 0 0 &L-p a TR 4 ap
AN
JD .

-(1 - a;R) expi t erfck Jt. (A18)
'
\
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i, WD, - at) (D, - af) ,
At s T an lv T ?%— | R = 0 exp(zt erfci Vvt
Litzo0) R o "TH b a“g '
i
(\Dg - a)( \_/750 - ap) 2
- = expp t erfcp-JtJ (A19)
a“u

where A is given by eq 9a. These equations reduce td the corresponding results
for planar electrodes if a is large, i.e., a >> (XR + XO)'l.

Approximate solution of the diffusion problem for cylindrical electrodes.
The diffusion equations for the species O'and R in a system having full
cylindrical symmetry are

et

- =

2
A A
p [ 0,1 %0 ]- ) ;
ol 2 "rér Bt “
) (a21) /‘
A A A
A B S ,
R_ ap? r Ar At /
and are to be solved subject to the initial conditions /
r>a: éR(r,t:o) = c; » colryt=o) = cg (A22)
and the boundary conditions
o 0
r—+wo | Ch(r’t) - cp o co(r,t) - ¢ (A23)
Ac Ac
. R 0
i(t, = nfD a—) = - nFD (—) (A24)
: R( rofea 0\ Ar r=a
The combination of eq 1 and A24 yields the conditions which must be
satisfied on the electrode surface r = a:
Ac . . ;
('ﬂro ) = xoco(a,t) Ag ¥ cR(a,t)
e (A25) ¢
N
¢ )
(A R) = - = cplast) + hpepla,t)
r
r=a :
In terms of the Laplace transforms
00 (
Uo(r,s) = J co(r,t)e-St dt
° (A26)
o0 t R
Uplr s) = JF cplr,te St at

NS
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the differential equations A2] and initial

2
.9 UO 1
D + =
0 3r *
2
: - 3 UR'+ 1
R . 3r2 r
The solution which satisfies the
°
\ 6]
(r o) = —
onr,s) s
O
. R
UR(r,S/ =

conditions A22 become
au. -

(@]

)l
L]

L .
(@]

(A27)
ar 4 R R
1L

(A28)

where Kg(x) is the modified Bessel function of the second kind of order zero.
a(s) and B(s) are determined by the simultaneous solution of eg A25:
u(S) =
K (v/é— a) VD [\, x R co]
1 DR 0O- R R 0 "0
s[\/'s K. (V = a)K ('/ﬁ— a)ta \[D K /— a)K (/g‘ a)+>\ ~/D /—'S" a)K ‘/-é‘ a)]
1 D 0 O D O
O R O R R
2(s, (A29)

Kl(/—'g—-o aNDp[h, cofk =

s[vs Kl(s/-s— alk (/—E_

D 1 D )T)\\/D K

(§__
0 R 0 70" By

y+a/D, K /—5

3.,
DR_ R R O D

0}1
m

a)Kl(v

where K (x) = -dKg{x)/dx is the modified Bessel function of the second kind and

of order 1.

Equations A28 together with the

values of a(s) and B(s) from eq A29,

determine Un(r,s) and Up(r,s), the Laplace transforms of the concentrations

g rst)s CR r,t )'
obt

From either of these expressions, together with eq A24, we

ain the Laplace transform, J(s), of the current i(t):

J(s) =

o)

6 Ty = AuDA K (e a e
Vs s T ADoKl by /K 5

(&~ 2"
o -

a\/k /—

R

+ /D, K

R RL o /;‘ (A30)

o)
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Unfortunately the. expressions for Up,Ug and J cannot be inverted
analytically to give ¢y, cg and i. A complete soluticn may be obtained, however,
by numerical inversion of the Laplace transforms, following the method described
by Papoulisl3. We used this procedure for the specific cases discussed in the
text. In addition, an approximate analytic solution has been derived. This is
valid for times much shorter than the smallest of a2/Do, az/DR, a/A\NDr, a/Z~Dp
(i.e., times sufficiently short that the diffusion distance is small in comparison
with the radius of the electrode). The approximate short-time solution for the
current, i(t), will be sketched; short-time approximate solutions for the concen-
trations are found in much the same way, and only the final expressions will be
given. .

.The approximate solution for i(t) is based on the fact that the behavior
of i(t) for small t is determined by the behavior of J(s) for large s. For large
s we havell

/s
K,(~' = a) % 3
0 DO o JDO 3 DO 5

I ) o 0 )

/S \ 2a Js 8 a%s
Kl('\' D_ a,

0
so that, as s » =,
- .

I(s) = (t0) ‘ (A21)

s + Avs - (\Po * MDg) /2

On factoring the denominator of this equation, as in the above treatment of the
spherical electrode, we obtain

i/, . )
(t) e -\ 2.2 -
- ! t o) expL(l ; b) I t]erfc[ 1 ; b A Jt]
(t:0) 25
B [<1 5)22‘1 [1 8 J] )
e exp - At lerfe — XAt (A32

where

£y . 2(NgDp + xoDo)f
L 2
aa

2

This regult ma be simplified by'introducing the approximation exp x© erfc x =

1 -.2n72 x + x4, valid for x << 1, to obtain

£
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(t=o) I 2a\*

i ) oDy + A
JL:l_ith+(1+RR ODO))\zt (A33)

Similarly the concentrations at the electrode surface, for small t, are given by

o - 1(t=0) [ 2 "
cplast) = ¢ -ﬁ[EJt -(1+-2;-;) xt] (A34)
'5 c ) =2 M[ Jt JD xt] (A35)
‘ - Colart) =g v oF o, - 2a7\ |

—

For large cylindrical electrodes, such that a > (Ag + xo)'l, these equations
reduce to the corresponding results for planar electrodes.

i’zl'( e

P R 4

S
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